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Abstract. As an extension of a previous treatment, the S-matrix problem is studied for the 
radial potential V(r)  = - (p  + h / r )  exp(-r). The Schrodinger equation is Laplace trans- 
formed. Then results on the asymptotics of the Laplace transformation are used to express 
the S-matrix element Si as a linear combination of the values of the transformed function 
and of its first 1 + 1 derivatives at one point in the complex plane. By a change of variables, 
the evaluation of .Si and of the phase shift St is then reduced to the numerical solution of a 
non-singular neutral functional differential equation (on a finite interval) followed by a finite 
recursive procedure. A convergent numerical scheme is implemented. Comparisons with 
literature results are performed. 

1. Introduction 

In this paper we consider the S-matrix problem for the radial Schrodinger equation 

r > 0 ,  
r 

with k > 0 and 1 E N = {0,1, 2, . , .}, under the assumption that for all r > 0 the potential 
function V obeys 

(1.2) 
This class of potentials is important since it includes a number of cases which appear 
frequently in the literature. Indeed, for p = 0 and A # 0, equation (1.2) yields the 
Yukawa potential; for p # 0 and A = 0, it yields the exponential potential; for A # 0 and 
p # 0, it yields the static potential approximation for the three-body problem. 

V(r) = - (p  + A / ?  (with a > O ;  A ,  p ER; IAI+Ipl>O). 

Now, it is clear that for ail potentials of class (1.2) one has 

(1.3) 

Then, employing a well established result (see, e.g., Reid and Simon 1979, theorem 
XI 53, Newton 1966 Q 11.1 and 12.1), we can claim that there is a unique real-valued 
function u ( r )  which obeys equation ( l . l ) ,  subject to (1.2), for all r E (0, +CO) and which 
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3288 G Paiano and S L Paveri-Fontana 

satisfies the constraints 

The function U has the asymptotic property 

U ( ? )  = voA sin(kr-;Irr+6l)+ojl), for r + +CO, 

for some 61 E R and for some A E R-(O). In the literature, is known as phase shift, 
whereas SI = exp(2i6l) is known as the Ith element of the S matrix. One can show that 
for each assignment of k > 0 and 1 E h, and for each choice of the potential function V 
satisfying the requirements (1.3)> SI E [w is unique, whereas 61 E R is unique modulo r. 
Also, SI is a functional of V and is a function of k and 1 ;  it is independent of vu.  

In a previous paper (Paiano and Paveri-Fontana 1978 (see also 1979), hereafter 
referred to as I), we have presented a convergent numerical procedure for the 
computation of the S-matrix element SI  for the Yukawa potential problem. In this 
paper we extend our previous treatment to allow for all potentials of class (1.2). As in I, 
the procedure hinges on some Abelian results which connect the behaviour of y ( 5 )  = 
t -" ' l 'u(at)  as t+ +a to the behaviour of its Laplace transform, 

(1.5) 

in the neighbourhood of its rightmost singularities in the complex s plane. In I as well as 
here, the estimation procedure for SI does not involve a complex plane integration. On 
the contrary, after Laplace transforming the Schrodinger equation (1.1) into a 
difference-differential equation and after performing a change of variables, we show 
that the evaluation of SI follows-with the help of a recursive procedure-from the 
solution of a pertinent initial-value problem €or a non-singular functional equation on a 
finite interval. For the solution of the initial-value problem we make use of a 
convergent numerical procedure. In this paper we shall rely on the results presented in I 
and we shall omit some mathematical details. We would like to remark, incidentally, 
that the lengthy treatment in § 2 of I could have been slightly streamlined by the 
omission of the uniqueness theorem (proposition 2 there); indeed, the uniqueness of 
results follows in I from the direct application of the basic theorem of appendix 2 to the 
retarded ordinary differential problem (3.1). We would also like to mention that 
Laplace transform procedures for the S-matrix problem have been developed by other 
authors (Almstrom 1969, 1970, Englefield 1968, 1974) in research work of analytical 
slant. Partial overlap is acknowledged. See also Leasure and Bowman (1978). 

We mentioned that our object is to establish a reliable convergent procedure (an 
'exact' procedure) for the computation of SI and al. The literature on this subject is 
extensive. Our survey in I was scant. Here, in order to illustrate the motivation of our 
work and its position with respect to the published literature, we would like to present 
some further literature information: the survey will be brief and, of course, no 
completeness is claimed. In the literature, distinct computational approaches for the 
phase shift problem have been developed, starting from three alternative (but 
equivalent) formulations of the problem: (i) the (linear second-order) radial 
Schrodinger equation formulation, equations (1.1) and (1.4); (ii) its (nonlinear first- 
order) Riccati counterpart, and the related variable phase formulation; (iii) the Fred- 
holm integral equation formulation (there are several versions, all related to the 
Lippman-Schwinger equation). For the actual evaluation of SI and S I  based on one of 
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the three formulations, several philosophies have been implemented. Here we 
choose-somewhat arbitrarily-to classify them as: (a) analytical; (b) approximate; (c) 
numerical. Analytical results have been obtained only for a limited number of cases. 
For instance, in the early work of Bethe and Bacher (1936) one finds the solution for the 
S-wave exponential potential case (A = 0, p # 0 ,  1 = 0 ) ;  recently Buhring (1977) has 
presented an expression for S1 in the Yukawa case (A # 0, ,U = 0, for all 1 E (0 ,  1 , 2 ,  . , .}) 
in terms of a convergent double series of hypergeometric functions. Approximate 
methods include the well known Born approximation (see, e.g., Newton 1966, Taylor 
1972), the Fredholm and the Pade approximant approaches (Reinhardt and Szabo 
1970, Moisewitsch 1970, Moisewitsch and O’Brien 1970), and finally the variational 
approach (see, e.g., Mott and Massey 1965 for a review of early results; see also Rudge 
1973 for more recent results, and Darewych and Pooran 1978 for error estimates). The 
main competitors of our method are the procedures involving the direct numerical 
solution of the problem. In the literature one finds several studies of the phase shift 
problem by means of a numerical treatment of the Schrodinger equation. The main 
difficulty is due to the fact that one is forced to solve numerically the Schrodinger 
equation on a finite interval (0, i) with some step-size h ; then, to estimate & by some 
matching procedure at i ;  finally, to study the behaviour of & under the double limit 
h + O’, i-, +CO. In the literature the numerical treatment of the Schrodinger equation 
has been performed using, among others, the Numerov method, the Runge-Kutta 
method and also the DeVogelaere method (see e.g., Allison 1970, Kermode and 
McKerrell 1975, Stern 1977, Coleman and Mohamed 1979). In so far as we know, no 
proof of convergence of & to the exact value has been established. From a more 
empirical standpoint, convergence difficulties for some cases have been found, for 
instance by Stern (1977 p 61); see also table 5 of this paper. The numerical treatment 
according to the variable phase-or the Riccati-formulation (Calogero 1967, 
Kermode 1968, Klozenberg 1974) also involves the numerical solution of a differential 
equation on a finite interval (0 ,  3 with some step-size h, followed by a limiting process 
as h + 0+ and i+ +W. However, no matching is required at i ;  in addition, error bounds 
for finite i can be established (one can use, for instance, equation (3.13) of Calogero 
1963). Good convergence patterns have been exhibited in the literature (Calogero 
1967). Table 6 of this paper compares our results with those obtained by Common 
(1979) employing Klozenberg’s (1974) PHASE code for the variable phase equation. 
Numerical work on the Fredholm integral version of the phase shift problem has been 
performed, for instance, by Holt and Santoso (1972) and by Stern (1977,1978). Proofs 
of convergence have not been given. In practice, difficulties originate here from the fact 
that one has to invert a matrix whose dimensions grow as the discretisation parameter 
shrinks. Finally, our method reduces the computation of SI and to the numerical 
solution of a non-singular linear functional differential equation on a finite interval, 
followed by a finite recursive procedure. Convergence is established. 

This paper is organised as follows. In § 2 the analytical results of 8 2 of I-which 
concerned the Yukawa potential case ( p  = 0, A # 0)-are generalised to the class of 
potentials (1.2). It is shown that the Laplace transformed function 9 obeys a difference- 
differential equation and that SI  = - c l / E ~ ;  here a bar denotes complex conjugation and cl 
can be expressed as a linear combination of y*(s) and its first (1 + 1) derivatives (its first 1 
derivatives in the Yukawa case) at s = iak + 1. The mathematical background has been 
established in appendix 1 of I, following Doetsch (1955). Section 3 of this paper 
corresponds to § 3 of I. For ,U # 0 some complications arise and a computational 
treatment which is slightly more involved than the one described in I becomes 
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necessary. In I a recursive procedure was applied to the numerical solution of an 
initial-value problem-equations (3.1) there-for a retarded (or delayed) differential 
equation. In the present paper a different recursive procedure is applied to the 
numerical solution of an initial-value problem-equation (3.1 1)-for a neutral 
functional differential equation?. The new procedure can be employed in the Yukawa 
case; however, even in this case it is not completely coincident with the procedure in I. 
This fact provides a convenient procedure for checking the reliability of the numerical 
implementation of the two procedures (table 3).  In § 4 results are reported on the 
computation of the phase shift SI in a number of cases. Whereas in I we have employed 
Feldstein's 'customary Euler algorithm' (Feldstein 1964, Cryer 1972 § 1.2.1), in this 
paper we employ a trapezoidal scheme both for the retarded problem of I and for the 
neutral problem found here. An increase in the speed of convergence is found. The 
trapezoidal scheme is described in the Appendix. 

2. The analytical treatment 

In this section we shall follow closely § 2 of I. Most details and proofs will be omitted. 
and 

Y = P + l )  U ,  equations ( l . l ) ,  (1.2) and (1.4) yield 

2 1+1 After the change of variables 5 = r/a,  ko = ka, A. = h a ,  po = p a  , yo = voa 

d 
5>0, 

d2 
d5  d t  

(e--?+ 2(1+ 1)-+ (kgt + A o  e-' +pot  e-")) y (5 )  = 0, ( 2 . 1 ~ )  

(2.lb) 

(2.lc) 

Here ko, I ,  yo, Ao,  po are assigned, subject to the requirements 

ko>O, l € N ,  Yo, Ao,  Po E R, l Aol + IF01 ' 0, Yo 
# 0. 

With reference to the results quoted in the Introduction, we know that problem (2.1) 
admits a unique solution y([), and that in [0, T) x (R-(0)) there is a unique pair (SI, A )  
such that 

y (5 )  = yoAS-('+') s in(kot-&r +SJ+o( l ) ,  for 5 + +a. (2.2) 

One can also show that y E %"((O, +a), R). 
On account of equations (2.1) and (2.2), we can claim that the Laplace integral (1.5) 

converges on the half-plane {s E @: Re(s) > 0) to an analytic function 9, which obeys the 
equations 

, (2.3) 
d $(s) A ~ $ ( s  + l)-po(d/ds)$(s + 1)-(21+ l ) y o  

Re(s) > 0. 
( s2  + k;)'+' 2 I + l =  

- 
ds ( s2+ ko) 

Now set 

(2.4) 

t For a classification of functional differential equations with retarded arguments (delays) see, e.g., El'sgol'ts 
and Norkin (1973), Hale (1977). 
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Then, on account of the analyticity of y  ̂ for Re(s) > 0, of equation (2.3) and of definition 
(2.4), we have the Laurent expansions 

+m 

, for s E C+ = {s E @: 1s - ikol < b}; R - ( l + l )  @(s) = 1 CR(S - iko) 
R=O 

(2.5a) 

(2.5b) 

where b = min{l, 2ko} and where 

Direct term-by-term integration of equation (2.5b) yields 

where wR = cR/(R - I) for R # I ,  and where wl is some appropriate complex number. A 
similar result holds in the vicinity of -iko on account of the reflection principle 
9 ( S )  = F(s). Expansion (2.7) suggests that the points +iko and -iko are branch points 
for the function y^. If one introduces in the complex plane the cuts r+= 
{s E @: Im(s) = +ko and Re(s) s 0) and r- = {s E @: Im(s) = -ko and Re(s) S 0}, one 
finds that y^ can be continued analytically on 63 - (I?, U r-). For details, reference should 
be made to proposition4 and figure 1 of I. 

In expansion (2.7) there is a regular part as well as a singular (logarithmic) part. 
Restricting our attention to the leading terms of the singular contribution, we have 

y^(s) =F+Cs)(l +o(s-')), 
y^(s) =f-(s)(l +o(s-')), 

for s + +iko, 

fors  + -iko, 

where - 
f+(s) = cl(2iko)'(s -iko)' ln(s -iko), f&) = f+(f). 

One can show that the assumptions of theorem 3 of appendix 1 of I are met. Hence 

for 5 + +a. 

Comparison of (2.8) with (2.2) yields 

8, = arg(cl) --+T (modulo T ) ,  

and also 

s, = -c,/E,, 

(2.9a) 

(2.96) 
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where, on account of equation (2.6), 

(2.10) 

It is then clear that we can evaluate Sl if we know the value of 9 and of its first ( I  + 1) 
derivatives (its first 1 derivatives in the Yukawa potential case, go = 0) at the non- 
singular point ik, + 1. 

As a final remark, we note that, as expected, for ko  = 0 all equations of this section 
reduce to their counterparts in I, provided one sets y o  = -1/(21+ 1). 

3. The computational procedure 

3.1. Preliminary remarks 

Restricting our attention to the behaviour of y  ̂ on the half-line {s E C: Im(s) = +ko and 
Re(s) 2 l}, we introduce the notation 

z( t )  = $(t+iko),  ( 3 . 1 ~ )  

(3 . lb)  

for t E  [ l ,  +CO). On account of equations (2.9), we are specifically interested in 
establishing an algorithm for the evaluation of DRz at t = 1 for R E (0, 1,2 ,  . . . , 1 +  1) 
(for R E (0, 1, 2 ,  . . . , l }  in the Yukawa case). 

We know that z E vm([1, +a), e). Moreover, equations ( 2 . 1 ~ )  and (2.3) yield, for 
R E N, 

( t2+2ikor)DRt1z( t ) -2( t+ikO)( l  -R)DRz(t)-R(21 + 1 -R)DR- 'z( t )  

=AoDRz(t+ l)-p,u.oDRfl~(t+ 1)-(21+ 1)6~oyo, t 2 1 ,  (3.2) 

(3.3) DRz (t) - (-- l )RyoR ! ( t  + iko)-(R+l), for t + +a, 

where aRO= 1 for R = 0  and S R O =  0 for R # 0. 
We can make use of equations (3.2) in two ways. 
(i) We can employ them together with the boundary conditions (3.3) to generate 

differential problems (to be solved numerically). 
(ii) We can use them as links connecting the derivatives of z at some point 

t E [l, +a) to those at t f  1 (to he useii recursively). 
In so far as point of view (i) is concerned, the most interesting cases correspond to 

those values of R for which equations (3.2) establish a first-order functional differential 
equation for DRz.  This occurs only for R = 0 and for R = 21 + 1. In the case R = 0, 
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equations (3.2), (3.3) yield 

d 
t2  + 2ikot dt  

(21(t +iko)z(t)-po-z(t + 1) +Aoz(t + 1) - (2I+ l)yo), 
d 1 
z z ( f )  = 

( 3 . 4 ~ )  

(3.4b) 

in equations (3.2)-(3.3), we have 

( 3 . 6 ~ )  

(3.6b) 

In so far as point of view (ii) is concerned, the following remark is of importance: 
suppose that for some 7 3 1 and some L E {1,2,3,  . . .}, the values of DL-'z and DLr are 
known at 7 and 7 + 1. Then, setting R = L in equation (3.2) one can proceed to evaluate 
DL+'z( i )  if and only if po = 0 (with A. # 0). On the other hand, setting R = L - 1 in 
equation (3.2), it is possible to evaluate DL-'z(7) for all Ao ,  po E Iw (with / A o /  + ipol > 0) .  

This remark is the basis for the two distinct treatments described below. 

3.1.1. The Yukawa potential case ( p o = O  and A o # O ) .  Suppose that a numerical 
scheme has been established for problem (3.4). Then, we can proceed to estimate 
numerically the values of z ( t )  for t E {1,2, . . . , I + 1). Consistently with the above 
remark, we can now proceed to use recursively the equations (3.2) with po = 0. Firstly, 
setting R = 0, we evaluate Dz( t )  for t E {1,2, . . . , I}; next, we set R = 1 and evaluate 
D2z( t )  for t ~ { 1 , 2 , .  . . , E - 1); then we set R = 2 and evaluate D32(t)  for t E  

{1,2, .  . . ,1-2}. We repeat the procedure up to the evaluation of D'z(1). Now, with 
the help of equations (3.1), the values of ~ ( l ) ,  Dz( l ) ,  D2z(1) ,  . . . , D ' z ( l )  can be 
inserted in equations (2.9) and (2.10) to yield SI and SI .  This approach was taken in I: 
the dia.gram in § 3.1 of I illustrates the recursive scheme. 

3.1.2. The general case. As discussed earlier, when p o # O  we can not follow the 
approach in § 3.1.1: the knowledge of the values of z( t )  and Dz( t )  for t E  
{1,2, . . . , 1 + 1) can not be used for the evaluation of D2z for t E {1,2, . . . , 1 } .  We must 
proceed 'backwards' using the information on the values of DRz( t )  and DR+'z( t )  at 
t = 1 , 2 , .  . . , L+1-for some R and some L in {1,2, .  . .}-to evaluate DR-'z ( t )  at 
t = 1,2 ,  . . . , L. In the project described here, we proceed as follows. After a change of 
variables, we solve numerically problem (3.6) and then we employ a numerical scheme 
for the integral in 

+m 

D2'z( t )  = (21 + l ) !  y o  1, f(t') dt'. (3.7) 

At this point we are in a position to evaluate D2'z( t )  and D2"lz(t) for t E  
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(1, 2, . . . ,21+ 1). We can then employ recursively the equations (3.2) to evaluate first 
t ( t ) fo r  t ~ ( 1 , 2 ,  . .  . ,21}, thenD''-'t(t)for t ~ { l , 2 , .  . . ,21- l} , .  . . ,finallyz(t) 

at t = 1. The values of D L z ( l )  = DL9(1+ iko) for L E (0, 1 ,2 ,  , . . , 1 + 1) can then be 
inserted in equations (2.9) and (2.10) to yield the values of SI and 81. 

In the following subsection we shall discuss the numerical treatment of problems 
(3.4) and (3.6). Here, as a final remark, we would like to point out that in the actual 
implementation of § 3.1.2-namely, in the 'backward' use of the recursive procedure- 
in order to avoid underflow and overflow difficulties it is convenient to make use of the 
recursive equations (3.3) in a new form; this is obtained by rewriting the equations (3.3) 
in terms of 

(3.8) 

p f - 1  

g R ( t )  = ( ( - I ) ~ / R !  y o ) ( t  +iko)R+lDRz(t) ,  

rather than in terms of DRz.  

3.2. The numerical treatment of problems (3.6) and (3 .4)  

After the change of variables 

and after setting 

a ( x ) = x / ( x + l ) ,  

problem (3.6) can be written as 

(3.9a) 

(3.9b) 

(3.9c) 

(3.10) 

(3.11a) 

W') = 1, (3.11b) 

where d+(a(x))/dx stands for d+(y)/dy evaluated at y = a ( x ) .  Making use of (3.9) and 
(3.10), equation (3.7) yields 

(3.12) 

Problem (3.11) is a non-singular initial-value problem for a neutral equation (see 
El'sgol'ts and Norkin 1973, or Hale 1977) on a finite interval. It belongs to the class of 
problems treated in the Appendix. Hence, it admits one and only one solution 
+ E  %'([O, 13, C). For the numerical treatment, we divide the x-interval [0, 11 in N 
subintervals of length h = 1/N; then we apply the trapezoidal scheme discussed in the 
Appendix. Piecewise linear interpolation yields +(x) for all x E [0,1] with an error 
which is O(h2) uniformly. We can then turn to equation (3.12). The integral of the RHS 
is non-singular. On account of the discussion in B 3.1 and of equation (3.9a), we are 
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interested only in the values of q ( x )  for x E {XI, x 2 ,  . . . , ~ 2 1 + 1 } ,  where xk = l / k .  Now let 
qk be the maximum integer such that hqk S l / k .  To evaluate 7 ) ( x k )  we proceed as 
follows. We partition the (0, xk) interval in qk subintervals of length h-namely, the 
intervals (0, h ) ,  (h ,  2h), . . . , ((qk - l )h ,  qkh)-and in one subinterval of length smaller 
than h, that is (qkh, x k ) .  Then we carry on the numerical evaluation of the integral on the 
RHS of (3.12), making use of the standard trapezoidal scheme and of the linearly 
extrapolated expression for +. Repeating the procedure we can evaluate q ( x k )  for all 
k E (1, . . . , 21+  l}, with error O(h2)  uniformly. Remembering equations (3.5), (3.8) 
and (3.9), we can now follow § 3.1.2. The ‘backward’ use of the recursive equations 
(3.2) permits, with the help of equations (2.9), (2.10) and (3.1), the evaluation of Si. If 
we disregard round-off errors, we can claim that the (finite) recursive procedure is exact. 
Hence we can claim that in the estimate of Si the error is O(h2). Applying Richardson’s 
extrapolation we obtain the value of Si with error O(h3).  

The procedure described above applies to all cases of potentials V obeying 
equations (1.2) with A ,  p ER, lAI+/p\#O.  As discussed in § 3.1 of this paper, in the 
Yukawa case ( p  = 0) one can employ equations (3.4) rather than equations (3.6): for 
this case the counterparts of equations (3.9), (3.10) and (3.11) are given in I. In I the 
resulting retarded (not neutral) initial-value problem was solved numerically, employ- 
ing Feldstein’s ‘customary Euler algorithm’ (1964).. The ‘forward’ recursive procedure 
described in § 3.1.1 in the present paper was then implemented, yielding SI with error 
O(h)t .  The results were Richardson extrapolated. Alternatively, the trapezoidal 
scheme described in the Appendix of the present paper can be applied, followed by the 
‘forward’ recursive procedure. In this case Sl is obtained with error O(h2).  Richardson 
extrapolation can be performed. 

4. Numerical results and comparisons 

All the computations were carried out on the IBM 370/158 managed in Bari, Italy by 
the CSATA laboratories. Tables 1 and 2 illustrate, for specific examples, the rate of 
convergence for the procedure based on the trapezoidal treatment of equations (3.1 1) 
and (3.12), followed by the backward recursive procedure (§ 3.1.2). In table 1 
numerical estimates of yl(iko + 1) = z(1) are tabulated for decreasing values of the 
step-size h and for given values of Ao,  pa, ko and 1. In table 2 the convergence of the 
numerical estimate of Si as h + O+ is illustrated. 

Table 3 illustrates the convergence of the numerical estimate of the phase shift SI  as 
h + O+ for a Yukawa potential problem (po = 0) ?or assigned values of ho and I ,  the first 
column refers to the numerical solution of equation (3.1) of I by the ‘customary Euler 
algorithm’, followed by the forward recursive scheme (§ 3.1.1); the second column 
refers to the numerical solution of (3.1) of I by tht  trapezoidal method, also followed by 
the forward recursive scheme; the third column refers to the numerical treatment of 
equations (3.10) and (3.12) of this paper by the trapezoidal method, followed by the 
backward recursive scheme ( Q  3.1.2). All results have been Richardson extrapolated 
once. 

As in tables 1 and 2, our results in tables 4 and 5 refer to the trapezoidal treatment of 
equations (3.10) and (3.12) followed by the backward recursive procedure (8 3.1.2), 
and by one Richardson extrapolation. The object of table 4 is to illustrate the accuracy 

t In I at page 1709, line 3, one should read ‘. . . the error is roughly proportional to the step-size h . . . ’ 
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of cur computations. An S-wave exponential potential problem (1=0,  ho=O) is 
treated for which the phase shift So can be estimated directly from Bessel function 
theory. Table 5 compares our procedure for the evaluation of S I  with a numerical 
procedure (Coleman and Mohamed 1979) which involves the solution of the radial 
Schrodinger equation on an interval followed by a matching procedure at ?. The 
convergence of the two procedures is exhibited in the table (as h + 0' in our case, as 
?++CO for the results of Coleman and Mohamed). The discrepancy in some of the 

Table 1. Convergence of the numerical estimate of y*(iko+ 1). Equations (3.11) and (3.12) 
are treated according to the trapezoidal scheme. The backward recursive procedure 
(P 3.1.2) is implemented. h is the step size. The results in the second column are obtained 
by Richardson extrapolation of the results in the first column. (u j  ko=0.5, 1 = 5 ;  ( 6 )  
koz1 .5 ,  1=3 .  

Computed values of y*(ik + 1 j 
h Computed values of y*(iko + 1) (Richardson extrapolated) 

i b )  
2--4 
2-5 
2-6 
2 -7 

2-s 
2--9 

2-'O 
2-" 

0.867 800 33 + i O , O O O  518 85 
0.869 68044+i0.000 722 21 
0.870 153 12 + i O , O O O  773 66 
0.870 272 22+i0.000 786 55 
0.870 302 13 + i O . O O O  789 79 
0,870 309 64+i0.000 790 60 
0.870 311 53+i0.000 790 80 
0.870 312 OO+iO.OOO 790 85 

0.802 206 20+i0.044 450 10 
0.803 537 82+i0.045 081 07 
0,803 871 62+i0,045 240 12 
0 4 0 3  955 78+i0,045 280 05 
0.803 976 91 +i0,045 290 10 
0,803 982 22+i0,045 292 62 
0 4 0 3  983 55 +i0.045 293 25 
0.803 983 88+i0.045 293 41 

0,870 307 14+i0.000789 99 
0 4 7 0  310 68+i0.000 790 81 
0.870 311 92+i0.000790 84 
0.870 312 10+i0~000790 86 
04370 312 15 + i O , O O O  790 87 
0 4 7 0  312 16+iO,OOO 790 87 
0.870 312 16+iO,OOO 790 87 

0.803 981 69 t i0 .045  291 40 
0 4 0 3  982 88+i0.045 293 13 
0 4 0 3  983 83 +i0.045 293 36 
0,803 983 95 +i0.045 293 44 
0.803 983 99 +io5045 293 46 
0.803 983 99 +i0,045 293 46 
0,803 983 99+i0,045 293 46 

Table 2. Convergence of the phase-shift estimates for the static potential V =  
-2(1+ l / r )  exp(-2r). The wavenumber is k = 3 .  Equations (3.11) and (3.12) are treated 
according to the trapezoidal scheme. The backward recursive procedure ( 6  3.1.2) is 
implemented. h is the step size. All results have been Richardson extrapolated once. 

818 812 h 8 0  

2 -4 0.571 004 2 0,146 161 1 0.858 762 7 
0.572 661 5 0.000 634 0 0.011 944 8 

2 -7 0.572 661 1 0.000 203 6 0.000 050 2 
2-8 0 ~ 0 0 0  201 8 0.000 007 2 
2 -9 0.000 201 6 0.000 004 63 
2-'O 0.000 004 47 

2-5 

2-6 0,572 660 6 0.000 230 0 0.000 735 7 
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Table 3. A comparison of three different numerical strategies for the Yukawa potential 
problem: W O  = 0, A. = 1.5, ko = 0.5, 1 = 3. The computed values of the phase shift S3 are 
displayed; h is the step size. 

2-4 
2 - 5  

2-11 

2-12 

0.056 717 36 
0.004 411 53 
0.002 193 56 
0.002 079 28 
05002 033 05 
0,002 029 65 
0.002 028 71 
0,002 028 62 
0.002 028 61 

-0.003 981 75 
0.002 143 58 
0.001 982 29 
0.002 033 57 
0.002 028 26 
0.002 028 71 
0.002 028 59 
0.002 028 60 
05002 028 60 

-0.002 020 10 
0,002 112 32 
0.002 050 16 
0.002 030 17 
0.002 029 00 
0.002 028 63 
0.002 028 61 
0.002 028 60 
05002 028 60 

Table 4. The S-wave exponential potential problem: = 1, A. = 0, ko = 1, 1 = 0. h is the 
step size. Computed values of the phase shift 60 are displayed. The exact value is 
S o =  1.208 554 1 5 . .  . . 

2 -l h 2-4 2-s 2--6 

S O  1.208 581 04 1,208 554 47 1.208 554 10 1.208 554 16 

results may be due to the 'most straightforward' matching routine at ?, which has been 
used by Coleman and Mohamed. 

Finally, in table 6 for some specific examples a comparison is performed with results 
obtained by Common (1979, table 1 there) using Klozenberg's (1974) PHASE code for 
the variable phase equation. Our results refer to the implementation of the trapezoidal 
scheme on problem (3.1) of I, followed by the forward recursive procedure (8  3.1.1). In 
contrast with the behaviour exhibited in table 2, here convergence is quite slow when 1 is 
large. The authors are now working on the implementation of faster numerical schemes 
on a class of functional differential problems which includes problem (3.1) of I and 
problem (3.11) here. 

5. Conclusions 

Asymptotic results concerning the Laplace transformation have been employed to 
derive a convergent numerical scheme for the S-matrix problem for a class of poten- 
tials-equation (1.2)-which appear frequently in nuclear physics as well as in atomic 
physics. Several numerical tests have been performed. Satisfactory convergence 
properties and good agreements with literature results have been demonstrated. 

Appendix 

Here we summarise some results concerning an initial-value problem for a linear 
non-singular neutral functional differential equation on a finite interval for a complex- 
valued function. Details will be presented elsewhere. Pertinent existence results may 
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Table 5. Comparisons with the phase-shift calculations of Coleman and Mohamed (1979) 
for the static potential problem V = -2(1+ l / r )  exp(-r). The computation of Coleman and 
Mohamed involves first the solution of the radial Schrodinger equation on  the interval (0, ?) 
and then the use of a standard fitting procedure at E ( a )  1 = 0,  k = 0.5; ( b )  I = 1, k = 1.0; (c) 
1 = 2, k = 0.4; ( d )  1 = 2, k = 0.5. 

Our  results Coleman and Mohamed (1979) 

h i 

( a )  
2-4 
2-5 
2--6 

( b )  
2-4 
2 F  
2 P  
2 -? 

2-s 

2T5 
2-6 
2-7 
2-8 

2-1° 

( C )  

2-9 

(4 
2-5 
2-= 
2-7 
2-8 

2-'o 
2 -9 

1.041 353 
1.044 658 
1.044 658 

1.112 935 x lo-' 
1.114 754x10-' 
1,114 741 X lo-' 
1.1 14 738 x lo-' 
1,114 738 X lo-' 

5.246 193 X 
5.245 1 5 9 ~  
5.244 270 x 
5.244 185 x 
5.244 163 x 
5,244 161 x 

1.390 750 x 
1.390 440 x 
1,390 321 x 
1,390 310x 
1,390 307 X 

1.390 307 X 

9.242 
10.41 

8.466 
9.521 

9,915 
11.23 
1 2 3 4  
13.82 
14.84 

9.703 
10.95 
11.99 

1.044 66 
1.044 65 

1.11469XlO-' 
1~11468X10-'  

5.240 71 x 
5.236 81 X 
5.217 90 x 
5.204 66 X 

5.205 09 X 

1,388 OOX 

1,386 9 7 ~  
1.386 95 x 

be found in Furi et a1 (1980). A comprehensive treatment of functional equations with 
delays may be found in Hale (1977). Some numerical methods have been reviewed by 
Cryer (1972). 

The problem is? 

Y %) = a (x )y " ' (a  ( x ) )  + b (x)y ( x )  + c ( x ) y  (a  ( x ) )  + U ( x ) ,  x E CO, 11, ( A l a )  

Y ( 0 )  = Y o  E @, ( A l b )  

Y E %:"(lo, 11, @I, j (Alc )  

where Y ( ~ ) ( x )  = dky(x)/dxk ( k  = 1 ,2 , .  . ,) and where m is some positive integer. It is 
assumed that the parameters a ,  a,  b, c and U obey the requirements 

a, a, b, c, U E %"-'( [O, 11, e), ( A 2 a )  

t When a ( x ) -  0 for x E [0, 11, problem (Al)  reduces to the retarded (or delayed) problem discussed, for 
instance, by Feldstein (1964, see also appendix 2 of Paiano and Paveri-Fontana 1978). 
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Table 6.  Comparison with the phase-shift calculation performed by Common (1979) for the 
Yukawa potential V = - ( 4 / r )  exp(-r), with k2 = 45. Common solves numerically the 
variable phase equation, using a code due to Klozenberg (1974). 

h so 83 65 a? 8 1 2  

2 -4 

2~ 
2-6 
2-? 
2-s 

2-‘o 
2-11 

2-12 

2-13 

2-15 

2-9 

2-14 

2-16 

Common 
(1979) 

0.774 27 0.259 10 0.351 26 
0.791 82 0.274 86 0.230 55 
0.791 21 0.270 66 0,214 04 0.698 60 
0.791 16 0.269 62 0.210 43 0.221 56 
0.791 16 0.269 38 0.209 51 0.134 50 

0.269 31 0.209 29 0.113 84 0.995 52 
0.269 30 0.209 23 0.108 92 0.730 91 

0.209 22 0.107 68 0.343 35 
0.107 38 0.129 64 
0,107 30 0.063 60 
0.107 28 0.046 23 

0.041 84 
0,040 74 

0.791 2 0,269 3 0.209 2 0.107 3 0.040 4 

0 < a (x) < x, 

la(O)I< 1,  
ja(0)a(k’(O)l < I ,  

x E (0,113 

k E { O , l ,  . . . ,  m - l } .  

For m 3 3, under the additional assumption 

da (x)/dx > 0, x E [0 ,11,  (A3) 

a numerical scheme for the problem is suggested by integrating by parts equation (Ala)  
on the interval (x, x + h ) :  

Y ( x  + h )  - Y = P (x + h ) y  (a  (x + h ) )  - P b ) y  ( a  (x)) 

where 

We partition the interval [0, 11 in N intervals of length h = 1/N and we set x k  = kh, 
a k = a ( X k ) , P k = P ( X k ) , P ~ = P ( l ) ( X k ) ,  ak=a(Xk) ,  bk=b(Xk),  ck=c(xk) ,  and 

q(k) = [a (Xk) /h l ,  rk = a(Xk) /h  -q(k) ,  

where [ U ]  denotes the largest integer that is smaller than (or equal to) U .  In addition, by 
linear interpolation, we take 

z k  = (1 - r k ) y q ( k )  + rkYq(k)+l 

as an approximation for Y ( a ( X k ) ) .  Here, of course, Y k  is the. counterpart of y ( x k ) .  
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Applying the trapezoidal scheme to the RHS of (A4) we obtain a ‘trapezoidal’ 
fixed-step algorithm for problem (Al) :  

Y o  = Y O ,  

Y k + l  = Y k  + ( P k + l Z k + l  - P k z k ) + ~ h ( ( b k + l Y k + l + b k Y k )  (A51 

+ ( C k + l - P h + l ) Y k + l + ( C k  - @ L ) Y k ) ,  kE{O,  1,. . . ,N-l}.  

We shall make use of the following notation. For k E {1,2, . . . , N } ,  x E [ 0 , 1 ]  and 
h = 1/N, y ( x )  and Y k , h  denote the solutions of (AI)  and (Aj) ,  respectively; moreover 

q k , h  = % 8 ~ 2 k , h / 2 - y k , h )  (A61 
is the Richardson extrapolated version of Y k , h .  Finally, by linear interpolation, for 
all x E [0,1] we set 

(A71 

(AS) 

Y ( &  h )  = ( x / h  - [ x / h I ) y [ x / h ] + l , h  + ( [ x / h ] + l - X / h ) Y [ x / h l ,  

f ( x ,  h )  = ( x / h  - [ x / h l ) q [ x / h ] + l , h  + ( [ X / h l +  1 - X / h ) T [ x / h ] .  

We have: 

Proposition 1. Let (-42) hold for some integer m 
and only one solution. 

1. Then problem ( A l )  admits one 

Proposition 2. Let (A2) and (A3) hold for some integer m 2 3.  Then there are constants 
K 1  and NI such that for any integer N SN, problem (AS), with h = 1/N, admits a 
unique solution, and 

l Y ( X ) - Y ( X ,  h)I-lh2, x E [O, 11. 

In addition, if m 3 4 ,  there are positive constants K 2  and N2 such that for any integer 
N B N2, with h = 1/N, one has 

Iw - XX, h)l< ~ ~ h ~ ,  x E [O, 11.  
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